如果在购物车中加入人工智能的算法模型,会有什么新的营销方式呢?
线上的购物车的概念源于线下商超的实体购物车,其主要作用是方便消费者在网站上购物,易于商品结算和抉择意向商品。购物车作为商品交易的中转站,全网每天有上亿用户在向购物车内添加中意的商品,顷刻间,就能产生过亿的销售额。
面对如此具大的流量,各家大厂都在惦记这个金矿。以往基于大数据的购物车营销,主要的产品形式为猜你喜欢和为你推荐,两者都是围绕用户的购物行为,用户商品爱好和用户画像属性展开,再经过大数据分析后,系统智能的推荐符合用户口味的商品。但是,这种营销方式是围绕购物车的商品或者用户画像推荐的其他商品,并非是对购物车内商品做营销策略,这种手段略微有点本末倒置了。
下文结合笔者的工作经历,讲述了如何基于购物车内商品,利用AI技术,设计一款购物车营销产品。
一、营销流程
商家端查看加购数据,如加购人数,加购件数,系统自动分析加购这部分人的画像数据,人群可以标签化
商家端根据自身需求,创建不同标签的人群的营销,例如可以选择新客户,老客户,15~25岁的用户群体,提供降价40元的服务
创建活动后,会触达给对应的覆盖人群。
第二天,商家端可以查看对应的营销数据。同时能够对比自然的转化率与促销后的转化率
二、商家端洞察购物车数据
购物车承载了所有的商品信息,包含商品名称,价格,店铺,促销,凑单和优惠券等。在进行大数据分析时,就需要把这些数据精分拆解清洗,提取有价值的部分。购物车的每件商品都可以看成一个实体,可能在不同的地点,不同的时间,有部分人把同一商品加进了购物车。这就说明这些群体是对这件商品感兴趣的,可能会下单,但却差些火候。也有部分人早早的就将商品加进了购物车,但却一直没有下单,临门却不入。 利用大数据技术,则可以把加购人群标签化,对不同标签的人群进行精准的营销策略,在一定程度上,能够提高购物车的转化。
如何进行呢?按照以下步骤:
商家加购数据盘点
产品需要考虑商家端和用户端。首先商家端需要了解自家的产品状况,销售情况,加购数据等,这样才能针对性的做营销策略。
商家端可以看到其店铺内的加购商品的人数,实时的计算某件商品,在多少人的购物车内,实时加购总件数,实时的库存。还能够查询到,这些商品的在未做干预的情况,自然的转化率情况(过去15天内加购该商品的消费者在昨日的转化率)。
列表中的商品按照加购人数从高到低排序,加购的人数越多代表这个商品越受欢迎。对加购人数多的商品进行营销干预,会起到更好的效果。当然,这里会把部分已经下架的,失效的商品自动的剔除掉。
画像部分把汇总所有用户的账户信息,画像纬度,从新客户,性别、消费层级、淘宝等级、地域5个纬度提供。画像将用户进行了标签化,利用这些标签,可以对其进行不同的营销动作。具体的分群策略可以看我的上一篇文章《基于大数据的会员任务营销,该怎么玩?》
商家可以单独对每个商品进行营销,根据自身品牌情况,投放给特定的人群,并进行低价,促销干预。
根据标签的选择,系统会根据用户在网站上的行为数据,提前预知已加购人群的转化比例,通过机器学习,能够自动过滤掉转化概率低的那部分用户群体。这里的计算规则是根据用户曾经是否购买过相同商品,或者是加入购物车是否是为了进行比价。
促销效果分析
通过用户分群能够了解你的客户群体特征,到底是什么样的人购买了你的商品或者对你的商品有意向,精准营销能够将这部分客户牢牢的抓在手里,用手段干预他们。对于商家来言,还需要效果分析数据。
圈定人数:活动覆盖的人群。系统能够计算符合活动标签和促销价格能够触达的人群
成交人数:活动开启后,提交订单的人数
触达人数:通过push和消息中心最终触达到的人群数量
成交金额:成交订单的总金额
三、消费者端触达的逻辑
当然,商家举办的所有活动都需要最终触达消费者端。基于购物车的营销,他的触达方式最优解就是在购物车参加活动的单品上进行用户触达,但只有覆盖的用户才会覆盖的到。触达方式分为:
购物车icon触达
购物车展示限时icon提醒,实时的促销倒计时提醒。时间的提醒能够增强消费者购物的紧迫感,通过促销和时间感提升喧嚣转化
降价提示,具体降价金额用红字展示,着重提醒。
消息中心触达
当活动开启时,在消息中心会收到push的营销内容,该内容为实时发送给已覆盖的人群。点击消息内容会跳转至购物车。不过这种push触达的方式效果并不是很好,点开率较低。具体的触达方式也可以看我的上一篇文章《基于大数据的会员任务营销,该怎么玩?》
结语
购物车的玩法多种多样,应该结合自家产品和研发能力评估当前阶段需要做哪些改进。但核心的目标是一致的,尽可能多的将购物车商品全部转化为订单,带来实际的收益。
文/十月菌(微信号公众号:shdwangluobo),京东产品经理,负责过多款互联网产品,主攻智慧营销,内容电商和B2B产品,擅长产品设计,数据分析,喜爱文字,热爱折腾。
*请认真填写需求信息,我们会在24小时内与您取得联系。